Cognitive Principles of Learning and Memory

Lise Abrams, Ph.D.
Professor & Chair
Department of Psychology
abrams@ufl.edu

Goals of this Workshop

- To help students learn more effectively in class
- To help students study what they have learned more effectively

Why Learning Can Be Difficult

- PROBLEM:
 - “When I'm listening in class, it all makes sense (so I don't need to write anything down)”
 - Why this is a problem:
 - Long-term memory is good at retaining the gist, not the details
- SOLUTION:
 - Encourage students to take good, comprehensive notes, which become the basis for their subsequent studying

How to Encourage Good Notetaking

- Get students to actively participate
 - Ask questions, do demos, have them read before class
 - Get them to critically analyze the information you are covering
- Notetaking strategies
 - Have them take notes in their own words, rather than just regurgitating yours from short-term memory
 - Incorporate notes from the book into lecture notes
 - Taking notes by hand vs. on a laptop (Mueller & Oppenheimer, 2014)

Why Studying Can Be Difficult

- “There is too much material, so I can't possibly study everything.”
- “When I’m studying, I feel like I know the material.”
- “I studied SO MUCH, but I still didn't do well on the exam.”
How to Study More Effectively

- What to do:
 - Elaborate
 - Test
 - Organize
 - Take breaks
 - Use variable encoding

Get Students to Elaborate

- Elaborate
 - Associate what they are learning with other things they have stored in memory
 - Levels of processing theory
 - The depth at which we process information during encoding determines how well we recall it (Craik & Lockhart, 1972)
 - Shallow vs. deep processing

Levels of Processing Theory

- Craik & Tulving (1975)
 - Presented nouns one at a time, and one of three types of questions:
 - Shallow processing: Is the word in capital letters?
 - Less shallow processing: Does the word rhyme with _____?
 - Deep processing: Does the word fit in the sentence...?

In our demo:

- Shallow (features):
 - book, snow, flower, tree, fox
- Less shallow (sounds)
 - safe, weight, color, hall, day
- Deep (meaning)
 - duck, house, student, robin, textbook

Recall all the words that you saw earlier (the ones paired with the different questions)

Results:

- More likely to recall words judged on meaning
- Least likely to recall words judged on appearance

Conclusion:

- Better memory for words processed more deeply
Deep Processing

- In what other ways can people process information deeply?
 - Self-reference
 - Imagery
 - Generation

Generation Effect

- Slamecka & Graf (1978)
 - Manipulated whether pairs of related words were read or generated
 - Read: sea-ocean
 - Generate: sea-oc_____
 - Also manipulated depth of processing
 - Deep: words related in meaning, e.g., sea-ocean
 - Shallow: words related in sound (rhymes)
 e.g., save-cave
 - Then gave a recognition test:
 - diamond ocean light

Self-Reference Effect

- Rogers, Kuiper, & Kirker (1977)
 - Encoding with respect to oneself increases memory: self-reference effect

Imagery

- Create images that link things, and visualize them interacting with each other

Real-World Examples of Generation

- Students can...
 - Talk out loud when studying
 - Explain the material to someone else
Roediger & Karpicke (2006)

Repeated testing is better for long-term retention than repeated study, even with reading the passage much less!

Get Students to Test Themselves

- **Self-test** by asking themselves questions
 - “Test Yourself” & “Think About It” questions
 - Create their own questions
- Complement individual studying with a study group
- Make sure they generate answers!

Get Students to Organize

- **Organize**
 - They should go through their lecture notes and organize them that same day
 - “Should I rewrite my notes?”
 - If so, use different words this time
 - Make their own study guides for exams
Get Students to Take Breaks

- Take breaks
 - Study in a number of shorter study sessions rather than trying to learn everything at once
 - Spacing effect

Spacing Effect

- Smith & Rothkopf (1984)
 - Gave an 8-hour statistics course, 4 lessons presented in one day (massed instruction) or four days (spaced instruction)

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massed instruction</td>
<td>Lesson 1</td>
<td>Lesson 2</td>
<td>Lesson 3</td>
<td>Lesson 4</td>
</tr>
<tr>
<td>Spaced instruction</td>
<td>Lesson 1</td>
<td>Lesson 2</td>
<td>Lesson 3</td>
<td>Lesson 4</td>
</tr>
</tbody>
</table>

- Spacing Effect
 - Smith, Glenberg, & Bjork (1978)
 - Studied lists twice, either in same or different contexts:

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Study</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studied in same context:</td>
<td>Room A</td>
<td>Room A</td>
<td>Test C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Recall = 40%)</td>
</tr>
<tr>
<td>Studied in different contexts:</td>
<td>Room A</td>
<td>Room B</td>
<td>Test C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Recall = 61%)</td>
</tr>
</tbody>
</table>

- How to Study More Effectively
 - What students should NOT do:
 - Simply memorize their notes
 - Create illusions of learning
 - Rely on metacognition

- What NOT to Do
 - They should not memorize their notes
 - Instead, apply what they have learned
 - Come up their own examples
What NOT to Do

- They should not create “illusions of learning”
 - Rereading
 - Leads to greater fluency, not better memory
 - Highlighting
 - Seems elaborative, but often becomes automatic

What NOT to Do

- Do not rely on metacognitive indicators
 - Our knowledge about our own memory is not always accurate
 - Encourage students to review their exams

Abrams metacognition demo

- What measures from BEFORE the exam correlate with actual exam score?

<table>
<thead>
<tr>
<th></th>
<th>Above</th>
<th>Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt prepared:</td>
<td>$r = 0.21$</td>
<td>$r = 0.22$</td>
</tr>
<tr>
<td>I studied:</td>
<td>$r = 0.26$</td>
<td>$r = 0.03$</td>
</tr>
<tr>
<td>Hours studied:</td>
<td>$r = 0.34^*$</td>
<td>$r = -0.06$</td>
</tr>
<tr>
<td>My score will be:</td>
<td>$r = 0.25$</td>
<td>$r = 0.08$</td>
</tr>
</tbody>
</table>

Some Helpful Videos

- http://www.samford.edu/how-to-study/