MAC2313, Calculus III
Exam 1 Review

This review is **not** designed to be comprehensive, but to be representative of the topics covered on the exam.

1. Let \(\vec{a} = \hat{i} + \hat{j} - 2\hat{k} \), \(\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k} \), and \(\vec{c} = \hat{j} - 5\hat{k} \). Find

 (1) \(|\vec{a}|\)
 (2) \(\vec{a} \cdot \vec{b}\)
 (3) \(\vec{a} \times \vec{b}\)
 (4) \(\vec{a} \cdot (\vec{b} \times \vec{c})\)

 (5) the angle between \(\vec{a} \) and \(\vec{b} \)
 (6) the scalar projection of \(\vec{b} \) onto \(\vec{a} \)
 (7) the vector projection of \(\vec{b} \) onto \(\vec{a} \)
 (8) the area of the parallelogram determined by \(\vec{a} \) and \(\vec{b} \)
 (9) the volume of the parallelepiped determined by \(\vec{a} \), \(\vec{b} \), and \(\vec{c} \)

2. Three forces act on a particle as given in the diagram below. Assume the system is in equilibrium.

 ![Diagram](image)

 If \(\theta_1 = \frac{\pi}{3} \), \(\theta_2 = \frac{\pi}{6} \), \(|\vec{F}_1| = 5\)N, and \(|\vec{F}_2| = 10\)N, find (1) \(|\vec{F}_3|\) and (2) \(\theta_3\).

3. Three forces \(\vec{F}_1 = \langle 2, 1, 1 \rangle \), \(\vec{F}_2 = \langle -1, 5, 3 \rangle \) and \(\vec{F}_3 \) act on an object. Find \(\vec{F}_3 \) if the net force on the particle has magnitude 6 and is in the direction of \(\langle 1, -2, 2 \rangle \).

4. Assume that \(\vec{u} \cdot \vec{v} = -3 \) and \(|\vec{v}| = 2\). Find \(\vec{v} \cdot (2\vec{u} - 3\vec{v}) \).
5. Let \(\vec{u} = \langle 3, -1, 2 \rangle \) and \(\vec{v} = \langle -2, 1, -1 \rangle \). Express the vector \(\vec{u} \) as the sum \(\vec{u} = \vec{v}_{/\parallel} + \vec{v}_{\perp} \), where \(\vec{v}_{/\parallel} \) is parallel to \(\vec{v} \) and \(\vec{v}_{\perp} \) is perpendicular to \(\vec{v} \).

6. If \(A(1, -2, 3), \ B(-1, 4, 5), \) and \(C(0, -1, 3) \) are three points in space, find
 (1) the point closest to the \(xz \)-plane and the point closest to the plane \(x = -2 \)
 (2) an equation of the sphere with a diameter \(AB \)
 (3) a unit vector perpendicular to the plane containing \(A, \ B, \) and \(C \)
 (4) an equation of the plane containing \(A, \ B, \) and \(C \)
 (5) the area of the triangle \(ABC \)

7. (1) Determine whether \(A(1, 0, 1), \ B(2, -1, 3), \) and \(C(3, -2, 5) \) lie on the same line.
 (2) Determine whether \(P(1, 1, 1), \ Q(2, 0, 3), \ R(4, 1, 7), \) and \(S(3, -1, -2) \) lie on the same plane.

8. Do the lines \(\vec{r}_1(t) = \langle 2 + t, 1 - 2t, t + 3 \rangle \) and \(\vec{r}_2(s) = \langle 1 - s, s, 2 - s \rangle \) intersect? If so, find the point of intersection.

9. Let \(L_1 : \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \) and \(L_2 : \frac{x + 1}{6} = \frac{y - 3}{-1} = \frac{z + 5}{2} \) be two lines in space.
 (1) Is \(L_1 \parallel L_2 \)? Do two lines intersect?
 (2) Find the distance from the point \((1, 1, 1)\) to \(L_1 \).

10. Let \(P_1 : \ x + y - z = 1 \) and \(P_2 : \ x - y - z = 5 \).
 (1) Do two planes intersect?
 (2) Find the angle between \(P_1 \) and \(P_2 \)
 (3) Find symmetric equations of the line of intersection of the two planes.
 (4) Find the distance from the point \((1, 1, -1)\) to \(P_1 \).

11. Discuss traces of the surface \(x^2 - y^2 + 4z^2 + 2y = 1 \) and identify the surface.
12. Find an equation of the surface consisting of all points $P(x, y, z)$ that are equidistant from P to the z-axis and from P to the plane $x = -1$. Identify the surface.

13. Consider the curve $\vec{r}(t) = \cos t \hat{i} + t \hat{j} - \sin t \hat{k}$. Find

(1) the unit tangent vector $\hat{T}(t)$ and the unit normal vector $\hat{N}(t)$
(2) the tangent line to the curve at $(1, 0, 0)$
(3) the arc length from $(1, 0, 0)$ to $(1, 2\pi, 0)$
(4) $\frac{ds}{dt}$
(5) the curvature of the curve at the point $(1, 0, 0)$

14. Find the curvature of the function $y = x^4$ at the point $(1, 1)$.

15. Let $\vec{r}(t) = \langle t^2, 2t, \ln(t) \rangle$ be a vector function describes the path of a particle with respect to t. Find the tangential and normal components of acceleration at $t = 1/2$.

16. For the curve given by $\vec{r}(t) = \langle \sin^3 t, \cos^3 t, \sin^2 t \rangle$, $0 < t < \pi/2$, find

(1) the unit tangent vector
(2) the unit normal vector
(3) the unit binormal vector
(4) the curvature

17. Let $\vec{r}(t) = \langle t \ln(t), \sin(\pi t), \sqrt{5 - t} \rangle$ be a vector function.

(1) Find the domain of $\vec{r}(t)$.
(2) Find $\lim_{t \to 0^+} \vec{r}(t)$.
(3) Find $\int \vec{r}(t) \, dt$.
(4) Let the curve C be parametrized by $\vec{r}(t)$. Find a and b if the vector $\langle a, b, 1 \rangle$ is parallel to the tangent vector of the curve C at the point $(0, 0, 2)$.