• Walk-In tutoring at Broward Hall
• Private-Appointment, one-on-one tutoring at Broward Hall
• Walk-In tutoring in LIT 215
• Supplemental Instruction
• Video resources for Math and Science classes at UF
• Written exam reviews and copies of previous exams

The teaching center is located in the basement of Broward Hall:

You can learn more about the services offered by the teaching center by visiting https://teachingcenter.ufl.edu/
1. The figure below shows an arrangement of four charged particles, with angle $\theta = 30^\circ$ and distance $d = 2.00$ cm. Particle 2 has charge $q_2 = 8.00 \times 10^{-19}$ C; particles 3 and 4 have charges $q_3 = q_4 = -1.60 \times 10^{-19}$ C. What is distance D between the origin and particle 2 if the net electrostatic force on particle 1 due to the other particles is zero?

![Diagram of charged particles](image)

A. 1.92 cm
B. 2.26 cm
C. 5.34 cm
D. 1.18 cm
E. 2.89 cm

2. A particle of charge Q is fixed at the origin of an xy coordinate system. At $t = 0$ a particle ($m = 0.800$ g, $q = 4.00 \mu$C) is located on the x axis at $x = 20.0$ cm, moving with a speed of 50.0 m/s in the positive y direction. For what value of Q will the moving particle execute circular motion? (Neglect the gravitational force on the particle.)

A. 1.06×10^{-5} C
B. 2.29×10^{-5} C
C. -1.59×10^{-5} C
D. -1.11×10^{-5} C
E. -3.17×10^{-5} C

3. In the figure below, a semi-infinite nonconducting rod (that is, infinite in one direction only) has uniform linear charge density λ. Find the angle (relative to the rod) of the net electric field at point P.

![Diagram of rod and point P](image)

A. 28°
B. 45°
C. 49°
D. 52°
E. 60°
4. At some instant the velocity components of an electron moving between two charged parallel plates are $v_x = 1.5 \times 10^5$ m/s and $v_y = 3.0 \times 10^3$ m/s. Suppose the electric field between the plates is given by $\vec{E} = (120 \text{N}/\text{C})\hat{j}$. What is the electron’s speed when its x coordinate has changed by 2.0 cm?

A. 3.18×10^6 m/s
B. 2.2×10^6 m/s
C. 2.8×10^6 m/s
D. 7.23×10^6 m/s
E. 8.86×10^6 m/s

5. A particle of charge q is placed at one corner of a Gaussian cube. Which of the following gives the flux through a single cube face that is not adjacent to the charge?

A. $\frac{q}{4\varepsilon_0}$
B. $\frac{q}{6\varepsilon_0}$
C. $\frac{q}{12\varepsilon_0}$
D. $\frac{q}{16\varepsilon_0}$
E. $\frac{q}{24\varepsilon_0}$

6. A charged particle is held at the center of a spherical shell. The figure below gives the magnitude E of the electric field versus radial distance r. The scale of the vertical axis is set by $E_s = 10.0 \times 10^7$ N/C. What is the net charge on the shell?

![Graph of electric field vs. radial distance]

A. $1.1 \mu C$
B. $2.7 \mu C$
C. $6.6 \mu C$
D. $7.1 \mu C$
E. $9.4 \mu C$
7. In the figure below, three thin plastic rods form quarter-circles with a common center of curvature at the origin. The uniform charges on the rods are \(Q_1 = 30 \, \text{nC}, \) \(Q_2 = 3Q_1, \) and \(Q_3 = -8Q_1.\) What is the net electric potential at the origin due to the rods?

\[
A. \ 3.2 \times 10^4 \, \text{V} \quad B. \ 1.8 \times 10^4 \, \text{V} \quad C. \ -2.6 \times 10^4 \, \text{V} \quad D. \ -3.0 \times 10^4 \, \text{V} \quad E. \ 1.3 \times 10^4 \, \text{V}
\]

8. Two electrons are fixed 2.0 cm apart. Another electron is shot from infinity and stops midway between the two. What is its initial speed?

\[
A. \ 320 \, \text{m/s} \quad B. \ 39 \, \text{m/s} \quad C. \ 58 \, \text{m/s} \quad D. \ 220 \, \text{m/s} \quad E. \ 150 \, \text{m/s}
\]

9. A nonuniform linear charge distribution given by \(\lambda = bx, \) where \(b \) is a constant, is located along an \(\text{x} \) axis from \(x = 0 \) to \(x = 0.20 \, \text{m}. \) If \(b = 20 \, \text{nC/m}^2 \) and \(V = 0 \) at infinity, what is the electric potential at the point \(y = 0.15 \, \text{m} \) on the \(\text{y} \) axis?

\[
A. \ 6 \, \text{V} \quad B. \ 8 \, \text{V} \quad C. \ 10 \, \text{V} \quad D. \ 12 \, \text{V} \quad E. \ 18 \, \text{V}
\]

10. The figure below gives the electric potential \(V(x) \) along a copper wire carrying uniform current, from a point of higher potential \(V_s = 12.0 \, \mu\text{V} \) at \(x = 0 \) to a point of zero potential at \(x_s = 3.00 \, \text{m}. \) The wire has a radius of 2.00 mm. What is the current in the wire? (The resistivity of copper is \(1.69 \times 10^{-8} \Omega \cdot \text{m} \))

\[
A. \ B. \ 1.2 \, \text{mA} \quad B. \ 3.0 \, \text{mA} \quad C. \ B. \ 0.8 \, \text{mA} \quad D. \ B. \ 4.7 \, \text{mA} \quad E. \ B. \ 6.1 \, \text{mA}
\]