1) Let \(g(x) \) be the function whose graph is the graph of \(f(x) = (x + 1)^3 \) reflected across the \(y \)-axis, shifted down 2 units, moved 3 units to the left, and finally compressed vertically by a factor of 2. What is the \(y \)-intercept of \(g \)?

2) Let \(f(x) \) be an odd function with \((2,4)\) on its graph and let \(g(x) \) be an even function with \((-2,5)\) on its graph.
 a) Find \((f + g)(2) \)
 b) Find \(\left(\frac{f}{g} \right)(-2) \)
 c) If \(f(x) \) is one-to-one function for what values of \(x \) does \(f(-x) = f(x) \)?
 d) If \(f(x) \) is one-to-one function and \(h(x) = 2\sqrt{x - 1} \), what is \((f^{-1} \circ h \circ g)(2) \)?

3) Consider the function \(f(x) = x^2 - 2x \).
 a) Find the average rate of change from 2 to \(x \) and simplify.
 b) For what values of \(x \) is the average rate of change equal to 5?

4) Given \(f(x) = 3x^2 - 10x - 8 \) and \(g(x) = \frac{\sqrt{x}}{2} \), find \(g(f(x)) \) and its domain.

5) Given \(f(x) = -\frac{3}{8x} \) and \(g(x) = -\frac{9}{64-16x^2} \), find the composite function \((f \circ g)(x) \) and its domain.

6) Give two functions such that their composition would result in the function:
 \[h(x) = \frac{5\sqrt{2x - 1}}{8 - 3\sqrt{2x - 1}} \]

7) The function \(f(x) = -2x^2 + 12x - 19 \) is not one-to-one but can be made so by restricting its domain to a particular interval. If you are told the point \((-9,1)\) is on the graph of the inverse function find \(f^{-1}(x) \) as well as the interval \(f \) was restricted to, to make it one-to-one.

8) Write the equation of parabola with vertex \((-3,2)\) and going through the point \((1,34)\).

9) What is the vertex of a parabola with intercepts \((-6,0), (2,0), (0,3)\)?

10) Graph the following rational function. Include in your graph the x-intercepts, \(y \)-intercept, the holes, the vertical asymptotes and the horizontal asymptotes.
 \[g(x) = \frac{2x^3 - 5x^2 - 9x + 18}{x^3 - 2x^2 - 9x + 18} \]
11) What are the zeroes of the following polynomial? What are the multiplicities of each zero. Finally, write the linear factors of the polynomial and graph the polynomial [Use synthetic division and the rational roots theorem].

\[x^6 - x^5 - 9x^4 + 13x^3 + 8x^2 - 12x \]

12) Suppose the weekly Profit for Gator Gadgets, a popular local novelty store, depends on the number of novelty unit produced each week. Now, suppose that the Profit can be modeled by the function \(P(x) = -3x^2 + 7x + 480 \) where \(x \) is the number of novelties produced in thousands per week. How many novelties should Gator Gadgets produce in order to maximize profit?

13) Evaluate \(f(3) \) if \(f(x) = -6x^6 + 20x^5 - 3x^4 - 21x^2 - 20x - 2 \).

14) What value of \(k \) is necessary to make 2 a zero of the function: \(f(x) = 2x^4 - 3x^3 + 2x^2 - 5x + k \)?

15) If the polynomial \(f(x) \) with only real coefficients has the following zeros (multiplicities shown in parenthesis), what is the smallest degree of \(f(x) \)?

\(x = 0 \ (3), \ x = -2 + 3i \ (4), \ x = 3 + 7i \ (1), \ x = -2 \ (1) \)

16) Perform Long Division on the rational function.

\[f(x) = \frac{-9x^3 - 2x - 6}{3x^2 - 2x + 5} \]

17) Simplify the complex valued expressions...

a) \(\frac{5}{i^{59}} \)

b) \((2 + 3i)^2 \)

c) \(-\frac{2i}{2+i} + \frac{i}{3-2i} \)

d) \(\frac{(3 + \sqrt{-4})(4 - \sqrt{-9})}{\sqrt{-5}\sqrt{-20}} \)

18) Solve for \(x \):

\((x - (3 - 2i))(x - (3 + 2i)) = 4 - 6x \)