1. Find and sketch the domain of the function.

(1) \(f(x, y) = \ln(x + y + 1) \)
(2) \(f(x, y) = \sqrt{4 - x^2 - y^2} + \sqrt{1 - x^2} \)

2. Show that the limit does not exist.

(1) \(\lim_{(x,y) \to (1,1)} \frac{xy^2 - 1}{y - 1} \)
(2) \(\lim_{(x,y) \to (0,0)} \frac{x^3 + y^3}{xy^2} \)

3. Evaluate the following limits.

(1) \(\lim_{(x,y) \to (1,1)} \frac{x^3y^3 - 1}{xy - 1} \)
(2) \(\lim_{(x,y) \to (2,2)} \frac{x + y - 4}{\sqrt{x + y} - 2} \)
(3) \(\lim_{(x,y) \to (0,0)} \frac{e^y \sin(2x)}{x} \)
(4) \(\lim_{(x,y) \to (0,0)} \frac{(x^2 + y^2) \ln(x^2 + y^2)}{x^2} \)

4. The contour map of a function \(f \) is shown.

(1) Is \(f_x(3, 2) \) positive or negative?
(2) Which is greater, \(f_y(2, 1) \) or \(f_y(2, 2) \)?
5. Consider the function \(f(x, y) = \begin{cases} \frac{\sin(xy)}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} \).

(1) Is \(f \) continuous at \((0, 0)\)?

(2) Is \(f \) differentiable at \((0, 0)\)?

6. Consider the function \(f(x, y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 1 & (x, y) = (0, 0) \end{cases} \).

(1) Is \(f \) continuous at \((0, 0)\)?

(2) Can you redefine the function so that \(f \) is continuous at \((0, 0)\)?

7. Find all the first and second order partial derivatives of \(f(x, y) = x^y \).

8. Find the linear approximation of the function \(f(x, y, z) = x^3\sqrt{y^2 + z^2} \) at the point \((2, 3, 4)\) and use it to estimate the number \((1.98)^3\sqrt{(3.02)^2 + (4.01)^2}\).

9. Use differentials to estimate the amount of metal in a closed cylindrical can that is 30 cm high and 5 cm in radius if the metal in the top and the bottom is 0.3 cm thick and the metal in the sides is 0.05 cm thick.

10. Find \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) at \((0, 1, 2)\) if \(x - yz + \cos(xyz) = 2 \).

11. Find an equation of the tangent plane to the surface \(z = x\sin(x + y) \) at the point \((-1, 1, 0)\).

12. Let \(z = \sqrt{x^2 + y^2} \). Show that \(\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \left(\frac{\partial^2 z}{\partial x \partial y} \right)^2 \).

13. Find \(\frac{\partial w}{\partial r} \) and \(\frac{\partial w}{\partial \theta} \) when \(r = 2 \) and \(\theta = \pi/2 \) if \(w = xy + yz + zx \), and \(x = r\cos \theta, \ y = r\sin \theta, \ z = r\theta \).
14. Find the directional derivative of \(f(x, y) = x^2e^{-y} \) at the point \((-2, 0)\) in the direction toward the point \((2, -3)\).

15. Let \(f(x, y) = \ln(1 + xy) \).

(1) Find the unit vectors that give the direction of steepest ascent and steepest descent at \((1, 2)\).
(2) Find a unit vector that points in a direction of no change at \((1, 2)\).

16. Find equations of (1) the tangent plane and (2) the normal line to the surface \(xy + yz + zx = 5 \) at the point \((1, 2, 1)\).

17. Where does the normal line to the paraboloid \(z = x^2 + y^2 \) at the point \((1, 1, 2)\) intersect the paraboloid a second time?

18. The plane \(y + z = 3 \) intersects the cylinder \(x^2 + y^2 = 5 \) in an ellipse. Find parametric equations for the tangent line to this ellipse at the point \((1, 2, 1)\).

19. Find the points on the surface \(2x^3 + y - z^2 = 5 \) at which the tangent plane is parallel to the plane \(24x + y - 6z = 3 \).

20. Let \(f(x, y) = 3x^2 - 3xy^2 + y^3 + 3y^2 \). Find the critical points of \(f \) and classify each critical point.

21. Find the local maximum and minimum values and saddle point(s) of the function \(f(x, y) = (x^2 + y^2)e^{-x} \).

22. Find the absolute maximum and minimum values of

(1) \(f(x, y) = x^2 + y^2 - 2x \) on the closed triangular region with vertices \((2, 0)\), \((0, 2)\), and \((0, -2)\)

(2) \(f(x, y) = (x^2 + 2y^2)e^{-x^2-y^2} \) on the disk \(\{(x, y) \mid x^2 + y^2 \leq 4\} \)

(3) \(f(x, y) = e^{-xy} \) on \(\{(x, y) \mid x^2 + 4y^2 \leq 1\} \)
23. Find the maximum and minimum values of
(1) \(f(x, y, z) = x + y + z \) subject to \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \)
(2) \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to \(x - y = 1 \) and \(y^2 - z^2 = 1 \)

24. Find the point(s) on the surface \(x^2 - yz = 1 \) that are closest to the origin.

25. Find the point on the ellipse \(x^2 + 6y^2 + 3xy = 40 \) with the largest \(x \) coordinate.

26. True or False:
(1) There exists a function \(f \) with continuous second partial derivatives such that \(f_x = x + y^2 \) and \(f_y = x - y^2 \).
(2) If \(f_x(a, b) \) and \(f_y(a, b) \) both exist, then \(f \) is differentiable at \((a, b) \).
(3) If \(f(x, y) \) is differentiable, then the rate of change of \(f \) at the point \((a, b) \) in the direction of \(\vec{w} \) is \(\nabla f(a, b) \cdot \vec{w} \).
(4) If \(f_x(a, b) = 0 \) and \(f_y(a, b) = 0 \), then \(f \) must have a local maximum or minimum at \((a, b) \).
(5) If \(f(x, y) \) is differentiable and \(f \) has a local minimum at \((a, b) \), then \(D_uf(a, b) = 0 \) for any unit vector \(\vec{u} \).