This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources made available by the Teaching Center include:

- Walk-In tutoring at Broward Hall
- Private-Appointment, one-on-one tutoring at Broward Hall
- Walk-In tutoring in LIT 215
- Supplemental Instruction
- Video resources for Math and Science classes at UF
- Written exam reviews and copies of previous exams

The teaching center is located in the basement of Broward Hall:

You can learn more about the services offered by the teaching center by visiting https://teachingcenter.ufl.edu/
1. Perform the indicated operations.
 (a) \(\frac{3^{-1} + 2}{3 + 2^{-1}} \)
 (b) \(\left(\frac{1}{2} + \frac{1}{2} \right)^2 \)
 (c) \(\frac{5 \cdot \frac{3}{2} + 3}{\frac{1}{3} + \frac{2}{3} - 2} \)

2. Simplify the expression \(\frac{(3x + 2)^{1/2}(x - 6)^2 + (x - 6)^3(3x + 2)^{-3/2}}{\sqrt{3x + 2}} \).

3. Find the equation of a line passing through \((1, 1)\) which is perpendicular to \(2y - x = 5\).

4. Find the domain of each function below.
 (a) \(f(x) = \frac{x^3 - 5x^2 + 6x}{(x - 2)\sqrt{2x - 1}} \)
 (b) \(B(t) = \frac{t}{e^t - 1} \)
 (c) \(g(x) = \frac{\sin(\pi x)}{\sqrt{x^5 - x}} \)
 (d) \(\omega(z) = \sec(\pi z) + \tan(\pi z) \)
 (e) \(h(x) = (\ln(x + 1))^{-1} \)
 (f) \(F(s) = \frac{\tan^{-1}(s)}{\sin^{-1}(s)} \)

5. Find a polynomial of minimal degree, with real coefficients, that has \(-3i, 1,\) and \(1 + i\) as roots.

6. Factor the polynomial \(f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18 \) into a product of linear terms.
7. Solve each system of equations.

(a) \[
\begin{align*}
2x - 3y &= -2 \\
4x + y &= 24
\end{align*}
\]

(b) \[
\begin{align*}
x^2 + y^2 &= 10 \\
2x + y &= 1
\end{align*}
\]

8. Use the remainder theorem to evaluate \(f(-2) \) where \(f(x) = 3x^3 + 8x^2 + 5x - 7 \)

9. What is the largest value attained by the function \(f(x) = -x^2 - 8x + 16 \)?

10. Determine the exact values without a calculator

(a) \(\cos \left(\frac{11\pi}{4} \right) \)

(b) \(\sin(27\pi) \)

(c) \(\sec \left(-\frac{13\pi}{3} \right) \)

(d) \(\tan \left(-\frac{17\pi}{6} \right) \)

11. Given \(\csc(\theta) = 2 \) and \(\tan(\theta) > 0 \) find the value of the six trigonometric functions.

12. A tent in the shape of an isosceles-triangular prism is 4 meters tall at its center. When erected, the sides of the tent make an angle of \(60^\circ \) with the ground. How wide is the tent?

13. The population of rabbits in Lenny’s hutch can be modeled exponentially by a function of the form \(P(t) = Ae^{bt} \) where \(t \) is measured in months and \(A \) and \(b \) are real constants. George initially gives Lenny 2 rabbits, and warns that they will double in population every two months.

(a) Determine the constants \(A \) and \(b \) in the modeling function \(P(t) \).

(b) After how many months will the population exceed one hundred rabbits?
14. Solve the following equations.

(a) \(5^{x-2} = \frac{1}{125}\)
(b) \(\tan^2(x) + \tan(x) - 12 = 0\)
(c) \(t = \sqrt{3} - 2t\)
(d) \(5e^{2-x} = 125\)
(e) \((2 \sin^2(\theta) - \sqrt{3} \sin(\theta))(\cos(\theta) + 1) = 0\)
(f) \(|z - 2| = 1\)
(g) \(x \ln(x) - \sqrt{2}x = 0\)
(h) \(2 \sin^2(t) + 3 \cos(t) = 3\)

15. A particle orbiting the origin has, at time \(t\), the \(y\)-component \(y(t) = \frac{1}{12}(\cos(8t) - 3 \sin(8t))\). At what times \(t\) will the particle lay on the \(x\)-axis?

16. Write \(\cos(\tan^{-1}(1) + \cos^{-1}(x))\) as an algebraic expression.

17. Sketch the graphs of the following functions. Label at least two points on each graph.

(a) \(f(x) = 4 - (x + 2)^4\)
(b) \(g(x) = \log_5(x + 1)\)
(c) \(M(x) = \frac{1}{|x+1|}\)
(d) \(h(x) = 2 + e^{1-x}\)
(e) \(\ell(x) = \ln|x|\)
(f) \(\Psi(t) = 4 \sin \left(t - \frac{\pi}{4}\right) + 1\)

18. Sketch the graph of the piecewise function. Label any discontinuities, and find its domain.

\[f(x) = \begin{cases}
2 - x^2 & \text{if } x < -1 \\
1 + \sqrt{x + 1} & \text{if } -1 < x < 1 \\
e^{x-1} - 1 & \text{if } x \geq 1
\end{cases}\]