Disclaimer: This review is by no means complete. Please review the textbook chapter 8.

1. Find the domain of each function:
 (a) \(f(x, y) = \ln(x + 3y) \)
 (b) \(g(x, y) = \frac{xy}{x^2 - y^2} \)
 (c) \(h(x, y) = \sqrt{16 - x^2 - y^2} \)

2. Sketch the level curves of the functions corresponding to each \(z \) values.
 (a) \(f(x, y) = e^x - y \) with \(z = -2, -1, 0, 1, 2 \).
 (b) \(g(x, y) = xy \) with \(z = -2, -1, 1, 2 \).
 (c) \(h(x, y) = \ln(x - y) \) with \(z = -2, -1, 0, 1, 2 \)

3. Let \(f(x, y) = x^2 - xy + 5y^2 \). Compute
 \[\lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h} \quad \text{and} \quad \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}. \]
 What is the geometric interpretation of these limits?

4. Let \(f(x, y) = x^3 \ln(y) + 4y^2 e^x \). Find indicated function or value.
 - \(f_y(x, y) \)
 - \(f_x(x, y) \)
 - \(f_{yy}(x, y) \)
 - \(f_{yx}(x, y) \)
 - \(f_{xx}(x, y) \)
 - \(f_{xy}(x, y) \)
 - \(f_{yx}(-1, 1) \)
 - \(f_{yy}(-1, 1) \)

5. Find the critical points of the function then use the second derivative test to classify the nature of each point. Determine the relative extrema of the function.
 (a) \(f(x, y) = x^3 + y^2 - 6xy. \)
 (b) \(g(x, y) = e^{x^2+y^2} \)
 (c) \(h(x, y) = xy + \ln x + 2y^2 \)

6. Explain why \(f(x, y) = x^2 \) has an infinite number of local extrema.

7. Show that \(f(x, y) = \sqrt{x^2 + y^2} \) has one critical point \(P \) and that \(f \) is nondifferentiable at \(P \). Does \(f \) take on a minimum, maximum or saddle point at \(P \)?
8. A firm produces two types of earphones per year: \(x \) thousand of type A and \(y \) thousand of type B. If the revenue and cost equations for the year (in millions of dollars)

\[
R(x, y) = 2x + 3y \\
C(x, y) = x^2 - 2xy + 2y^2 + 6x - 9y + 5
\]

determine how many of each type of earphone should be produced per year to maximize profit. What is the maximum profit?

9. Consider the data set \(D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \).

(a) Derive the formula for \(a \) for the least squares curve \(y = ax - 1 \) that best fits the data set \(D \).

(b) Derive the formula for \(b \) for the least squares curve \(y = 2x + b \) that best fits the data set \(D \).

(c) Use the formulas in the previous parts on the data set \(\{(1, 3), (2, 1), (3, 2), (4, 0)\} \).

10. Use the method of Lagrange multipliers to minimize or maximize the function with the constraint. Explain how you know it’s a max or a min.

(a) \(f(x, y) = 3x^2 + 5y^2 \) subject to \(2x + 3y = 6 \).

(b) \(f(x, y) = xy \) subject to \(3x + y = 720 \).

(c) \(f(x, y) = 2x^2 + y^2 + 2 \) subject to \(x^2 + 4y^2 = 4 \).

(d) \(f(x, y) = e^{3x-5y} \) subject to \(x^2 + y^2 = 1 \).

11. Let \(f(x, y) = xe^{xy} \) and suppose \((x, y)\) changes from \((1, 0)\) to \((0.9, 0.01)\). Compute \(dz \) and \(\Delta z \). Compare the values of \(\Delta z \) and \(dz \). How close is the approximation.

12. Find the total differential of the function \(f(x, y) = (x^2 + y^4)^{3/2} \) at the given point \((3, 2)\).

13. The price-earnings ratio (PE ratio) of a stock is given by

\[
R(x, y) = \frac{x}{y}
\]

where \(x \) denotes the price per share of the stock and \(y \) denotes the earnings per share. Estimate the change in the PE ratio \(R \) of a stock if its price increases from $62/share to $65/share while its earnings decrease from $3/share to $2.60/share. (Round your answer to two decimal places.)

Answer: 3.76.

14. Evaluate the double integral \(\int \int_{R} f(x, y) \, dA \) where \(f(x, y) = y + 2x \) and \(R \) is the rectangle defined by \(1 \leq x \leq 2 \) and \(0 \leq y \leq 1 \).
15. Evaluate the double integral $\int\int_{R} 2xy \, dA$ and R is the region bounded by the graphs of $y = -x$ and $y = x^2$, $x \geq 0$ and $x = 1$.

16. Find the volume of the solid bounded above by the surface $z = f(x, y) = 2x + y$ and below by the plane region R where R is the triangle bounded by $y = 2x$, $y = 0$, and $x = 3$. Answer: 54 cubic inches.

17. Reverse the order of integration for each integral. Evaluate the integral with the ordered reverse. Do not attempt to evaluate the integral in the original form.

(a) $\int_{0}^{2} \int_{x^2}^{4} \frac{4x}{1 + y^2} \, dy \, dx$

(b) $\int_{0}^{1} \int_{y}^{1} \sqrt{1 - x^2} \, dx \, dy$

18. The production of a certain company is given by the function

$$f(x, y) = 50x^{1/3}y^{2/3}$$

when x units of labor and y units of capital are utilized. Find the approximate percentage change in the production of the company if labor is increased by 6% and capital is increased by 5%. (Round your answer to two decimal places.) (Ans: 5.33%)